A Heuristic and Its Mathematical Analogue within Artificial Neural Network Adaptation Context

نویسنده

  • Gursel Serpen
چکیده

This paper presents an observation on adaptation of Hopfield neural network dynamics configured as a relaxation-based search algorithm for static optimization. More specifically, two adaptation rules, one heuristically formulated and the second being gradient descent based, for updating constraint weighting coefficients of Hopfield neural network dynamics are discussed. Application of two adaptation rules for constraint weighting coefficients is shown to lead to an identical form for the update equations. This finding suggests that the heuristically-formulated rule and the gradient descent based rule are analogues of each other. Accordingly, in the current context, common sense reasoning by a domain expert appears to possess a corresponding mathematical framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network Planning Using Iterative Improvement Methods and Heuristic Techniques

The problem of minimum-cost expansion of power transmission network is formulated as a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and genetics. An applied example is presented. The results from a set of tests carried ...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

Speeding - Up Adaptive Heuristic Critic

Neurocontrol is a crucial area of fundamental research within the neural network eld. Adaptive Heuristic Critic learning is a key algorithm for real time adaptation in neurocontrollers. In this paper we present how an unsupervised neural network model with adaptable structure can be used to speed-up Adaptive Heuristic Critic learning, its FPGA design , and how it adapts the neurocontroller to t...

متن کامل

Estimating Efficiency of Bank Branches by Dynamic Network Data Envelopment Analysis and Artificial Neural Network

Network data envelopment analysis models assess efficiency of decision-making unit and its sections using historical data but fail to measure efficiency of its units and their internal stages in the future. In this paper we aim to measure efficiency of stages of bank branches and obtain efficiency trend of stages during the time, then to estimate their efficiency in the future therefore we can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005